Реферат

Реферат Кровь 2

Работа добавлена на сайт bukvasha.ru: 2015-10-28



Кровь — жидкая ткань сердечно-сосудистой системы позвоночных животных, в том числе человека. Состоящая из прозрачной бледно желтоватого цвета плазмы и взвешенных в ней форменных элементов: красных кровяных телец, или эритроцитов, белых, или лейкоцитов, и кровяных бляшек, или тромбоцитов. Циркулирует по замкнутой системе сосудов под действием силы ритмически сокращающегося сердца и непосредственно с другими тканями тела не сообщается. У всех позвоночных кровь имеет красный цвет (от ярко- до тёмно-красного), которым она обязана гемоглобину, содержащемуся в специализированных клетках, эритроцитах. У некоторых моллюсков и членистоногих кровь голубого цвета благодаря гемоцианину.

Кровь подразделяется на находящуюся в русле сосудов — так называемая периферическая кровь, и кровь, находящуюся в кроветворных органах и сердце – депонированная кровь.

Функции

Кровь, беспрерывно циркулирующая в замкнутой системе кровеносных сосудов, выполняет в организме различные функции:
  1. транспортную (питательную) — доставляет питательные вещества и кислород к клеткам тканей;
    • иногда перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким отдельно обозначают как дыхательную функцию;
  2. выделительную — выносит из тканей ненужные продукты обмена веществ;
  3. терморегуляторную — регулирует температуру тела, перенося тепло;
  4. гуморальную — связывает между собой различные органы и системы, перенося сигнальные вещества, которые в них образуются;
  5. защитную — клетки крови активно участвуют в борьбе с чужеродными микроорганизмами.

Частично, транспортную функцию в организме выполняют так же лимфа и межклеточная жидкость.

В филогенетическом ряду животных кровь впервые, хотя и несовершенно, отделяется от межтканевой жидкости одновременно с появлением кровеносной Системы — у эхинодерм и аннелид; в теле человеческого эмбриона кровь появляется на 3—4-й неделе одновременно с зачатками сосудов и внутри их. Как эти зачатки, так и первичные форменные элементы крови происходят из, мезодермы.

Несмотря на то, что многие авторы продолжают еще говорить о «кровяной ткани» с жидким межуточным веществом, термин «ткань» отнюдь нельзя признать применимым к крови, которая отличается от любой другой ткани гл. обр. тем, что место образования ее морфологических элементов и составных частей плазмы находится не в самой крови, а вне ее. Вместе с лимфой (к-рую между прочим никто тканью не называет) кровь представляет внутреннюю среду для всех элементов нашего тела, к-рую все органы и ткани пополняют продуктами своей жизнедеятельности, а нек-рые органы, как костный мозг, селезенка, лимф, железы и пр., еще и образующимися в них форменными элементами.

Состав

Кровь состоит из двух основных компонентов — плазмы и взвешенных в ней форменных элементов.

Плазма крови – жидкая часть крови, составляющая 50 -60 % от всего объема крови. Она содержит воду и растворённые в ней вещества — белки и другие органические и минеральные соединения. Основными белками плазмы являются альбумины, глобулины и фибриноген. Более 90 % плазмы — вода. Хлористый натрий, углекислый натрий и некоторые другие неорганические соли составляют около 1 %. Остальное количество приходится на долю белков (примерно 7 %), виноградного сахара (примерно 0,1 %) и очень малого количества многих других веществ. Содержатся в плазме и газы, в частности кислород и углекислый газ. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ, а также неорганические ионы.
Форменные элементы крови представлены эритроцитами, тромбоцитами и лейкоцитами:
Эритроциты (от греч. ἐρυθρός — красный и κύτος — вместилище, клетка), также известные под названием красные кровяные тельца  — клетки крови человека, позвоночных животных и некоторых беспозвоночных (сипункулид, у которых эритроциты плавают в полости целома).
Функции

Основной функцией эритроцитов является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении.

Однако, кроме участия в процессе дыхания, они выполняют в организме следующие функции:
  • участвуют в регулировке кислотно-щелочного равновесия;
  • поддерживают изотонию крови и тканей;
  • адсорбируют из плазмы крови аминокислоты, липиды и переносят их к тканям.

1)Дыхательная - функция выполняется эритроцитами за счёт гемоглобина, который обладает способностью присоединять к себе и отдавать кислород и углекислый газ. 2)Питательная - функция эритроцитов состоит в транспортировке аминокислот к клеткам организма от органов пищеварения.

3)Защитная - определяется функцией эритроцитов связывать токсины за счёт наличия на их поверхности специальных веществ белковой природы — антител.

4)Ферментативная - эритроциты являются носителями разнообразных ферментов.
Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни — 3—4 месяца, разрушение (гемолиз) происходит в печени и селезёнке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения:
  1. из стволовых гемопоэтических клеток сначала появляется большая клетка с ядром, не обладающая характерным красным цветом — мегалобласт;
  2. затем она окрашивается в красный цвет — теперь это эритробласт;
  3. уменьшается в размере в процессе развития — теперь это нормоцит;
  4. утрачивает ядро — теперь это ретикулоцит.

У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что дает им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках. Количество эритроцитов в крови в норме поддерживается на постоянном уровне (у человека в 1 мм³ крови 4,5—5 млн эритроцитов, у некоторых копытных 15,4 млн (лама) и 13 млн (коза) эритроцитов, у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90—130 тыс.) Общее число эритроцитов снижается при анемиях, повышается при полицитемии. Продолжительность жизни эритроцита  у собак — 107 дней, у кроликов и кошек — 68, (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается).

Роль эритроцитов в транспорте углекислого газа. Эффект Холдена.


В крови капилляров тканей организма напряжение углекислого газа составляет 5,3 кПа (40 мм рт. ст.), а в самих тканях — 8,0—10,7 кПа (60—80 мм рт. ст.). В результате С02 диффундирует из тканей в плазму крови, а из нее — в эритроциты по градиенту парциального давления С02. В эритроцитах С02 образует с водой угольную кислоту, которая диссоциирует на Н+ и HCO3. (С02 + Н20 = Н2СО3 = Н+ + HCO3). Эта реакция протекает быстро, поскольку С02 + Н20 = Н2СОэ катализируется ферментом карбоангидразой мембраны эритроцитов, которая содержится в них в высокой концентрации. Эта реакция протекает по закону действия масс и в норме выражается в логарифмической форме, известной как уравнение Гендерсона—Гассельбаха.

В эритроцитах диссоциация углекислого газа продолжается постоянно по мере образования продуктов этой реакции, поскольку молекулы гемоглобина действуют как буферное соединение, связывая положительно заряженные ионы водорода. В эритроцитах по мере освобождения кислорода из гемоглобина его молекулы будут связываться с ионами водорода (С02 + Н20 = Н2С03 = = Н+ + HCO3), образуя соединение (Нb-Н+). В целом это называется эффектом Холдена, который приводит к сдвигу кривой диссоциации оксигемоглобина вправо по оси х, что снижает сродство гемоглобина к кислороду и способствует более интенсивному освобождению его из эритроцитов в ткани. При этом в составе соединения НЬ-Н+ транспортируется примерно 200 мл С02 в одном литре крови от тканей к легким. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена.

Роль эритроцитов в транспорте углекислого газа от тканей к легким. А. Процессы газообмена углекислого газа между клетками тканей и плазмой крови. С02 поступает путем диффузии в плазму крови из тканей и дифференцирует внутрь эритроцитов. В эритроцитах С02 превращается при участии фермента карбоангидразы мембраны эритроцитов в НСОз и в виде этого иона вновь активно транспортируется в плазму крови, в которой в составе бикарбонатов (NaHC03) переносится к капиллярам легких. Водородные ионы, образующиеся при реакции дегидратации Н2С03, захватываются молекулами гемоглобина и также транспортируются кровью от тканей к легким. При транспорте из эритроцитов НСОз-ионное постоянство внутри эритроцитов поддерживается хлорным сдвигом. Кроме того, С02 в эритроцитах непосредственно соединяется с Nh2 группами белков гемоглобина. Б. Процессы газообмена углекислого газа между плазмой крови и альвеолами легких. В капиллярах легких в эритроцитах под влиянием эффекта Бора происходит диссоциация карбаминовых соединений и С02 диффундирует через мембрану эритроцитов и альвеолярную мембрану в просвет альвеол легких.

Диссоциация углекислого газа в эритроцитах может быть лимитирована только буферной емкостью молекул гемоглобина. Образующиеся внутри эритроцитов в результате диссоциации С02 ионы НСОз с помощью специального белка-переносчика мембраны эритроцитов выводятся из эритроцитов в плазму, а на их место из плазмы крови закачиваются ионы СГ (феномен «хлорного» сдвига). Основная роль реакции С02 внутри эритроцитов заключается в обмене ионами СГ и НСОз между плазмой и внутренней средой эритроцитов. В результате этого обмена продукты диссоциации углекислого газа Н+ и НСОз будут транспортироваться внутри эритроцитов в виде соединения (Нb-Н+), а плазмой крови — в виде бикарбонатов.

Эритроциты участвуют в транспорте углекислого газа от тканей к легким, поскольку С02 образует прямую комбинацию с — NН2-группами белковых субъединиц гемоглобина: С02 + Нb -> НbС02 или карбаминовое соединение. Транспорт кровью С02 в виде карбаминового соединения и ионов водорода гемоглобином зависит от свойств молекул последнего; обе реакции обусловлены величиной парциального давления кислорода в плазме крови на основе эффекта Холдена.

В количественном отношении транспорт углекислого газа в растворенной форме и в форме карбаминового соединения является незначительным, по сравнению с его переносом С02 кровью в виде бикарбонатов. Однако при газообмене С02 в легких между кровью и альвеолярным воздухом эти две формы приобретают основное значение.

Когда венозная кровь возвращается от тканей к легким, С02 диффундирует из крови в альвеолы и РС02 в крови снижается с 46 мм рт. ст. (венозная кровь) до 40 мм рт.ст. (артериальная кровь). При этом в величине общего количества С02 (6 мл/100 мл крови), диффундирующего из крови в альвеолы, доля растворенной формы С02 и карбаминовых соединений становится более значительной относительно бикарбонатной. Так, доля растворенной формы составляет 0,6 мл/100 мл крови, или 10 %, карбаминовых соединений — 1,8 мл/100 мл крови, или 30%, а бикарбонатов — 3,6 мл/100 мл крови, или 60 %.

В эритроцитах капилляров легких по мере насыщения молекул гемоглобина кислородом начинают освобождаться ионы водорода, диссоциировать карбаминовые соединения и НСОз вновь превращается в С02 (Н+ + НСОз = = Н2С03 = С02 +Н20), который путем диффузии выводится через легкие по градиенту его парциальных давлений между венозной кровью и альвеолярным пространством. Таким образом, гемоглобин эритроцитов играет основную роль в транспорте кислорода от легких к тканям, и углекислого газа в обратном направлении, поскольку способен связываться с 02 и Н+. В состоянии покоя через легкие из организма человека за минуту удаляется примерно 300 мл С02: 6 мл/100 мл крови х 5000 мл/мин минутного объема кровообращения.

Лейкоци́ты (от греч. λευκος — белый; κύτος — клетка) — белые кровяные клетки; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признаку отсутствия самостоятельной окраски и наличия ядра.

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и неспецифической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов. Все виды лейкоцитов способны к активному движению и могут переходить через стенку капилляров и проникать в ткани, где они поглощают и переваривают чужеродные частицы. Этот процесс называется фагоцитоз, а клетки, его осуществляющие, — фагоцитами. Если чужеродных тел проникло в организм очень много, то фагоциты, поглощая их, сильно увеличиваются в размерах и в конце концов разрушаются. При этом освобождаются вещества, вызывающие местную воспалительную реакцию, которая сопровождается отеком, повышением температуры и покраснением пораженного участка. Вещества, вызывающие реакцию воспаления, привлекают новые лейкоциты к месту внедрения чужеродных тел. Уничтожая чужеродные тела и поврежденные клетки, лейкоциты гибнут в больших количествах. Гной, который образуется в тканях при воспалении, — это скопление погибших лейкоцитов.

Содержание лейкоцитов в крови не является постоянным, а динамически изменяется в зависимости от времени суток и функционального состояния организма. Так, количество лейкоцитов обычно несколько повышается к вечеру, после приёма пищи, а также после физического и эмоционального напряжения. Увеличение общего абсолютного количества лейкоцитов в единице объёма выше верхней границы нормы называется абсолютным лейкоцитозом, а уменьшение её ниже нижней границы — абсолютная лейкопения.

Лейкоциты различаются по происхождению, функциям и внешнему виду. Некоторые из лейкоцитов способны захватывать и переваривать чужеродные микроорганизмы (фагоцитоз), а другие могут вырабатывать антитела. Лейкоциты делятся на Б-и Т-клетки и они определяют физиологическую сущность иммунитета. Б-клетки вырабатывают антитела, которые с током крови разносятся по организму. Антитела соединяются с бактериями и делают их беззащитными против фагоцитов. Т-клетки сами находят болезнетворные бактерии или клетки, поражённые вирусами. Вступив в контакт с ними, Т-клетки выделяют особые вещества, вызывающие гибель бактерии или вирусов. Таким образом лейкоциты защищают наш организм от вирусов и бактерий.

По морфологическим признакам лейкоциты, окрашенные по Романовскому—Гимзе, со времён Эрлиха традиционно делят на две группы:
  • зернистые лейкоциты, или гранулоциты — клетки имеющие крупные сегментированные ядра и обнаруживающие специфическую зернистость цитоплазмы; в зависимости от способности воспринимать красители они подразделяются на нейтрофильные, эозинофильные и базофильные;
  • незернистые лейкоциты, или агранулоциты — клетки, не имеющие специфической зернистости и содержащие простое несегментированное ядро, к ним относятся лимфоциты и моноциты.

Соотношение разных видов белых клеток, выраженное в процентах, называется лейкоцитарной формулой.

Исследование количества и соотношения лейкоцитов является важным этапом в диагностике заболеваний.

Эозинофиллы — лейкоциты, содержащие двудольчатое ядро и гранулы, которые окрашиваются эозином в красный цвет. Они регулируют аллергические реакции, их количество возрастает при аллергиях, а также в случаях заражения глистами.


1. Реферат на тему Macbeth 4 Essay Research Paper In the
2. Реферат на тему Программируемая клеточная смерть
3. Реферат Бизнес-план малого предприятия методика и расчет реального проекта
4. Сочинение на тему Смысл названия пьесы А Н Островского Гроза
5. Реферат Вариантные формы глагола
6. Реферат Банковская система в России и пути её дальнейшего развития
7. Реферат Создание презентаций посредствам Powerpoint
8. Курсовая Экономические циклы 8
9. Реферат Инновационный маркетинг
10. Курсовая Деньги в мировой экономической системе